OVERHEAD CIRCUIT #2 ALUMINUM (2 WIRE)

I. Quantity

The base bid shall include the indicated number of feet of overhead circuit #2 Alum (2 Wire) furnished and supplied as hereinafter specified.

II. Material

- a. Wire The single conductor aluminum wire shall consist of one ACSR #2, 7 strand 6/1, conductor. The wire shall have .047 inches of cross linked polyethylene insulation rated at 600V. The single conductor wire shall be code worded "PIGNUT".
- Secondary Racks with Spool Insulators The secondary racks shall be heavy duty, hot dipped galvanized steel, with two 3" Spool Insulators, approved equal to Porcelain Products Catalogue #3928.
- c. Secondary Rack Extension brackets The secondary rack 9" or 21" extension bracket shall be heavy duty, hot dipped galvanized steel, approved equal to Cooper Catalogue #DR2E1 or DR2E2.
- d. Splices The splices shall be compression type, aluminum, equal to Burndy product.
- e. Tie Wire The tie wires shall be #6 aluminum.
- f. Through Bolts The through bolts, nuts, and washers shall be hot dipped galvanized, 5/8" diameter.
- g. Insulating Pads The insulating pads shall be approximately 3 1/4" x 4 1/2" x .125" Scotch #2200 or approved equal.

III. Installation

- a. The overhead circuit shall be installed in the locations shown on the drawings and indicated in the field by the engineer.
- b. Secondary rack extension brackets shall be used in locations shown on the drawings and indicated in the field by the engineer.

- c. The wire shall be strung and sagged in accordance with DOE DWG. 01S0117 and as instructed in the field by the engineer.
- d. The overhead circuit shall consist of two wires strung on the secondary racks in the areas indicated.
- e. All clearances indicated in the National Electrical Safety Code shall be maintained throughout and any relocation of existing facilities required or indicated for such clearance shall be obtained by the contractor and included in the unit price bid under this item.
- f. All racks at dead-ends or at angle points shall be installed by bolting through the pole.
- g. Preformed coated dead-ends of the appropriate size shall be used at circuit terminations and directed by the engineer.
- h. All lines side splices and taps shall be insulated with an insulating pad.

IV. Quotation

The overhead circuit #2 Alum (2 Wire) as hereinbefore specified, shall be quoted on as a unit price per circuit foot in the appropriate places of this document.

SAG AND TENSION DATA FOR STREET LIGHTING PIGNUT

SPAR	N = 100	F+	SPAN	= 110	Ft	SPA	N = 120	F+	SPAN	= 130	Et	SPAN	= 140) Ft.
TEMP.		TENSION	TEMP.		TENSION	TEMP.		TENSION	TEMP.		TENSION	TEMP.		TENSION
F	Ft.	Lb.	F	Ft.	Lb.	F	Ft.	Lb.	F	Ft.	Lb.	F	Ft.	Lb.
0	.13	1202			1202	0	.18	1202		.22	1201	0	.25	1201
10.	.13	1160			1160	10.	.19	1159		.22	1159	10.	.26	1159
20.	.14	1116			1116	20.	.20	1116		.23	1116	20.	. 27	1115
30.	.14	1072			1071	30.	.21	1071		.24	1071	30.	.28	1071
40.	.15	1025			1025	40.	.22	1025		.25	1025	40.	. 29	1025
50.	.16	977		.19	977	50.	.23	977		. 27	977	50.	.31	977
60.	.17	928		.20	928	60.	.24	928		. 28	928	60.	.32	928
70.	.18	877		.21	877	70.	.25	877		.30	877	70.	.34	877
80.	.19	824		.23	824	80.	.27	825		.32	825	80.	.37	825
90.	.20	770		.24	770	90.	.29	771		.34	771	90.	.39	772
100.	.22	714		.26	715	100.	.31	715	100.		716	100.	.42	717
100.		,	100.		7.10.	100.					,		7. 175	:
	÷													
SPAN	1 = 150	Ft.	SPAN = 160 Ft.			SPAN = 170 Ft.			SPAN = 180 Ft.			SPAN = 190 Ft.		
TEMP.		TENSION	TEMP.		TENSION	TEMP.		TENSION	TEMP.		TENSION	TEMP.	SAG	TENSION
F	Ft.	Lb.	F	Ft.	Lb.	F	Ft.	Lb.	F	Ft.	Lb.	F	Ft.	Lb.
.0	. 29	1200			1200	0	.37		0	42	1199	0	.46	1199
10.	.30	1158		•	1158	10.	.38	1158	10.	43	1157	10.	.48	1157
20.	.31	1115		- 7	1115	20.	.40	1115		45	1114	20.	.50	1114
30.	.32	1070			1070	30.	.42	1070		47	1070	30.	.52	1069
40.	.34	1024			1024	40.	.43	1024		49	1024	40.	.54	1024
50.	.35	977		.40	977	50.	.45	977		51	976	50.	.57	976
60.	.37	928		.42	928	60.	.48	928		54	928		.60	928
70.	.39	877		.45	878		.51	878		57	878	70.	.63	878
80.	.42	825		. 48	826	80.	.54	826		60	826	80.	.67	827
90.	.45	772		.51	773		.57	773	90	64	774	90.	.72	774
100.	.48	717		. 55	718		.62	719		69	720	100.	.77	721
SPAN	= 200	Ft.	SPA	N = 210	Ft.	SPA	N = 220	Ft.						
TEMP.	SAG	TENSION	TEMP.	SAG	TENSION	TEMP.	SAG	TENSION						
F	Ft.	Cb.	F	Ft.	Lb.	F.	Ft.	Lb.						
0	.51	1198	0	. 57	1198	0	.63	1180						
10.	. 53	1156	10.	. 59	1156	10.	.65	1138						
20.	. 55	1113	20	. 61	1113	20.	.68	1094						
30.	. 58	1069	30	. 63	1069	30.	.71	1050						
40.	.60	1023	40.	.66	1023	40.	.74	1004						
50.	. 63	976	50.	. 69	976	50.	.78	957						r
60.	.66	928	60	.73	928	60.	.82 -	908						
70.	.70	878	70	.77	878	70.	.87	858						
80.	.74	827	80	.82	828	80.	.92	808						
90.	.79	775	90	.87	776	90.	.98	756						
100.	.85	722	100	94	723	100. 1	.06	703						

A CTOT TO	MUNICI			POWER SYSTEM	•
MELP	תרפד הכ	CITY OF	COLUMBUS,	OHIO OF ELECTRICITY	
	DEP 1. UF	DITTITES	- DIAISIUM	1 DE EFECTATORI	

REVISIONS

SAG AND TENSION DATA FOR STREET LIGHTING PIGNUT

SCALE	NONE	DRAWN LS	11/93	DRAVING ND. 0150117		
C. D. NUMBER		APPROVED		SHEET DF		